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APPROXIMATION TECHNIQUES FOR CONTROL SYSTEMS WITH DELAYS

H. T. Banks and J. A. Burns

1. Introduction

In this report a modification of earlier approximation
schemes (see [2,3,4,7,8]) for linear semigroups is used to develop
a general framework for approximating certain nonlinear optimal
control problems governed by functional differential equations
(FDE). Particular types of schemes are discussed in the context
of this framework, and numerical examples are given that illustrate
some of our findings in using these schemes on "typical" control
problems. We also present a short survey of recent and ongoing
efforts which entail the application of semigroup approximation
ideas to optimal control problems governed by FDE.

Throughout the paper, we shall denote by L;(a,b) (or
Lz(a,b) if Vv = 1) the customary Lebesgue space of R'-valued L,
"functions" on (a,b). The symbol |:| will be used for all norms
and it is to be understood that, in general, |x| denotes the X
norm of x whenever x is an element of the space X. The vector

space of n X m matrices will be written as j{; m’ and
’

n n

Z =R X Lg(-r,O) will be the usual product space. If x: [-r,+®) -+ R
and t > 0, then the symbol Xy denotes the function X, : [-x,0] > Rn
given by xt(s) = x(t+s). Finally, we shall not, in general,
distinguish between row and column vectors when the usage makes

clear our intended meaning.

o —




2. Representation of FDE by an abstract equation in Z

Let D(t) € & _  be such that the function t + |D(t)]|
’

is in Lz(-r,O), 0= h0 < hl < .. <h, =1, and A; € &%'

i=1,2,...,v. If ¢: [-r,0] » R, then define L to be the

nl

operator

V 0
L(¢) = I A0(-h)) + f D(0)¢ (0)asd.
i=0 -r

We shall be concerned with the nonlinear control system

x(t) L(xt) + £(t,x(t) ,tiu(t))' b €& [Ortll

(2.1)
x(0)

nl xo = ¢l
where t1 is finite, (n,¢) € 2, and £f has the form
f(t:Yc‘P.V) . /yl(trer) + {-/yz(trer) + B(t) }v.

We assume that the mapping t =+ B(t) € 3% = is continuous, and
4

1 n 1 ;
/1. R" x Z » R ,/2. R" x 2 =~ _‘t;"m satisfy:
(Al) The mappings (t,y,V¥) -+ jq(t,y,W), i =1,2, are continuous.
(A2) For each 2 C 2 bounded, there exist bounded measurable

functions Kl,Kz such that

|/i(t'Y0w) i /ﬁ_(t1x1¢)l N Ki(t)'(er) = (xr¢)|

for all (xl¢)l (YIW) € 9. T e er i= 1'2-




0, i = 1,2, and there exist bounded measurable

(A3) _A&(t,0,0)

A A

functions Kl’KZ such that for t € R,
| A4 ey, 0) | < Rpe) [ yo) ], &= 1,2,
for all (y,y) with |(y,¥)| sufficiently large.

For t > 0, define the operator S(t): Z > 2 by S(t)(n,9) =

(x(t),xt) where x is the solution to the homogeneous linear

equation x(t) = L(xt), satisfying x(0) = n, Xy = ¢. It is known

that {S(t:)}t>0 is a linear Co semigroup on 2, and if W

denotes the infinitesimal generator of this semigroup, then & is

defined on () = {(n,¢)| ¢ is absolutely continuous,
n

$ €L0(-r,0)0 and n=¢(0)} by on,4) = (L($),4). Let T :2 >R
and "2: Z + Lg(-r,O) be the coordinate projections, ﬂl(n,¢) = n

and ﬂz(n,¢) = ¢. Define F: Rl x 2 X R* » 2 by

F(t,z,v) = (f(t,"lz,ﬂzz,v) :0).

Consider the abstract integral equation in 2

t
z(t) = S(t)z0 + f S(t=o)F(o,z(0),u(o))do, (2.2)
0

where 0 < t < tl and zo = (n,¢) € 2. If f satisfies (Al)-(A3)

and u € L?(O,tl), then it follows from the more general results

established in [2] that equation (2.2) has a unique solution on

e e < e




[O,tll. The following theorem is an extension of the result for
linear systems (see [3]) and provides a slight improvement on the

linear and nonlinear cases previously treated (see [2] - Theorem 2.1).

Theorem I. Suppose that f satisfies (Al)-(A3) and u € L?(O,tl).
If z, = (n,¢) is any element in 2, then

z(t;zo,u) = (x(t;zo,u), xt(zo,u)), (2.3)

where t -» x(t;zo,u) is the solution to (2.1) and ¢t -~ z(t;zo,u)

is the solution to (2.2).

Observe that Theorem I differs from Theorem 2.1 in [2] in
that we do not require that 1z, = (n,¢) belong to D(o/). In
particular, the equivalence (2.3) establishes unequivocally an
abstract formulation for the control system (2.1) as the integral
equation (2.2).

The proof of Theorem I follows the proof of Theorem 2.1 of
[2] once one has established the continuity of the mappings
(zg,u) > (x(t;zgy,u), xt(zn,u)) and (zo,u) » z(t;zy,u)  from
Z X Lg(o,tl) into 2. Verification of these continuity require-
ments entail only slight modifications of the arguments behind

Lemma 2.2 and Lemma 2.3 of [2].

Remark 2.1: Theorem I is the foundation for the general approximation

technique to be detailed below. The idea is to approximate the

linear semigroup ({S(t)} which will lead, via the equivalence (2.3),




to approximations of the original nonlinear FDE system (2.1).
Before pursuing this matter we note that Theorem I is also valid

for the somewhat more general nonlinear systems considered in [2].

3. Approximating control systems

We now turn to development of our abstract framework for
approximating optimal control problems governed by the nonlinear
FDE system (2.1). This framework extends the linear theory given
in [3] and is a slight modification of the ideas developed in [2].
Let z(t;zo,u) denote the solution to the abstract integral
equation

t
z(t) = S(t)zO + Jos(t-c)F(o,z(o),u(o))do, (3.1)
on the interval [O,tl]. Our goal is to construct approximations to
Z(t;zo,u) and we shall do this by first approximating 2 and
{s(t)}.
N

We say that the sequence of quadruples {ZN,P ,MN,SN(t)},

N=1,2,..., is an approximating sequence if the following hypotheses

are satisfied:

N

(H1) Z is a finite dimensional subspace of 2 for each N.
(H2) PN: z » ZN are (continuous) projections onto ZN such
that 1im|PN(n,¢) - (n,4)| = 0 for all (n,$) € 2.
N>
N N N 2 )
(H3) For each N, M': 2 ~» Z is a linear operator, and there

is a sequence {YN} of constants such that 1lim YO
N-»co




and |MN(E,0) - (£,0)] < YN|€| for all & €R".

Y (where K

(H4) The semigroups (S (t)} satisfy [s"(t)| < Ke
and Y are constants independent of N) and if (n,9) € 2Z,
then limISN(t)(n,¢) - S(t)(n,¢)| = 0 and the convergence

N-eo

is uniform in t on compact subsets of Rl.
Remark 3.1: The definition of an approximating sequence given above
is related to but not the same as one employed by Trotter in [15].
The operators MN were first introduced in [8] and they play an
important role in certain approximation schemes (see the piecewise
linear scheme in the next section and the discussions in [7]).

N

If {ZN,P MN,SN(t)} is an approximating sequence, then

we define for each N the approximating integral equation

t

2V (t) = SN(t)PNzo + J sN (t-0) M¥PVF (0, 2" (0) ,u (o) ) do, (3.2)

0

where 0 < t < t. and z (n,¢) € 2. As in [2], it can be shown

1 0~
that (3.2) has a unique solution for each z) € Z and u € L?(O,tl),
provided £ satisfies (Al)-(A3). Moreover, since ZN is finite
dimensional it follows that the integral equation (3.2) is equivalent

to the ordinary differential system

N

ZNe) = aV2Ve) + MYPVF (e, 2N (t) ,u(t))

(3.3)

N

zN(O) Pz

0'

where AN is the infinitesimal generator for {SN(t)}, i.e.,




A few observations are now in order. First, in some schemes
where elements of the form ({,0) are in ZN (this is the case for
the schemes to be discussed here - but is not the case in the event
one considers the spline approximations in [6]) we point out that

F(t,z,v) = (£(t,7,2,7,2,v),0) is in zN. Hence, in (3.2) and (3.3)

i
it is not necessary to project F(t,z,v) onto ZN with PN.
Secondly, the idea of approximating FDE systems by finite dimensional
ordinary differential equations is not new and for a rather complete
summary of previous efforts involving such techniques one may see
[4].

Returning to the problems under discussion here, we observe
that the following two theorems may be proven using the basic ideas
in [2] and [7].
Theorem II. Let {ZN,PN,MN,SN(t)} be an approximating sequence
and suppose % G L?(O,tl) is bounded. If z(t;zo,u) and
zN(t;zo,u) are defined by (3.1) and (3.2), respectively, then

N ; de s
z (t;zo,u) > z(t;zo,u) as N » «, uniformly in t on [0,tl]

and u € %#.

Theorem III. Let {ZN,PN,MN,SN(t)} be an approximating sequence.

If {uN} is a sequence in L?(O,tl) and {uN} converges weakly

to u, then zN(t;z ,uN) > z(t;zo,u) as N » o, uniformly in ¢t

0
on [0,t1].




Remark 3.2: Theorem III is the only result in this paper that

does not extend to the more general nonlinear systems treated in

[2]. The critical requirement in establishing this convergence is

the weak continuity of the mapping u > z(t;zo,u) from L?(O,tl)

into 2. However, for systems with nonlinearities satisfying (Al)~-(A3)

weak continuity can be argued (see [2] for more comments on this point).
If z(t;zo,u) and zN(t;zo,u) are given by (3.1) and (3.2),

respectively, then we let zN(t;zo,u) = (xN(t),yN(t)) (where

xN(t) (2 Rn, yN(t) = Lg(-r,O)) and observe that since

z(t;zo,u) = (X(t),xt) we have convergence of xN(t) to x(t) in

n

R" and y"(t) to x, in LD)(-n,0) (uniformly in t on [0,t,]

and in u € ¥). Consider the optimal control problem:

(2) Minimize the cost
1=
1 o
J(u) = = x(t,)Gx(t,) + = {x(s)Qx(s) + u(s)Rul(s) }ds

2 1 i i 2 0
subject to (2.1) and u € %, where % is a closed convex
subset of L?(O,tl).

N N N _N . ; "

1£f {z ,p ,M ,S (t)} is an approximating sequence, then

we formulate the corresponding approximating control problems:

(jigﬂN Minimize the cost
t

1
Fu) = xN(tl)GxN(tl) + % f {(xN(s)ax"(s) + u(s)Ru(s)}ds
0

N =

subject to (3.2) and u € %.




Suppose now that for each N, GN is an optimal control for
the approximating problem (;Véﬁ)N (note that @' need not be unique
in the general case of problems with a nonlinear system). Employing
standard arguments (see Theorem 4.1 of [3]) one can show that {GN}
is a bounded sequence in L?(O,tl) and possesses a subsequence
which converges weakly to a control that yields a solution to problem

(4). Indeed, one finds

Theorem IV. Suppose that GN is an optimal control for problem

(&?)N, N=1,2,... . Then there is an optimal control u* for

N N
problem (%) and a subsequence {u K}  such that fa =1 converges
* Nk -—Nk *
to u and x (t;zo,u ) x(t;zo,u ) as Nk + ®_, Moreover,
if u* is the unique solution for (%) then the original sequence
{EN} converges to u* and xN(t;zo,GN) > x(t;zo,u*), uniformly

b3 T -

4. Two approximation schemes

In this section, we outline two particular schemes that are
included in the general framework presented in Section 3 and discuss
some numerical examples based on these schemes. 1In order to facilitate
exposition in illustrating these ideas, we consider the simplest case
where the linear part of equation (2.1) has the form L(¢) = AO¢(0) +
Al¢ (-r) .

Let {t?}, j=0,1,2,...,N be the partition of [-r,0]

N N N

defined by tN = 2L and let EN be the midpoint of [t ,t; -1 = 14,
p N j 3’ 3=1 J
N |

We let xj denote the characteristic function for [t?,tg_l), while

- g v T ———————
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W?(t) - (t-€§)x?(t). If (n,9) € 2, then for j = 1,2,...,N we

define

N _ N
¢j % ; f N¢(s)dsl
A
-
oV = 122 f (s-tV) 6 (s)ds,
j Pl
j

and we define ¢g to be n.

The approximating sequence for what we shall call the averaging

approximations is defined by quadruples

AVE = {ZN,PN,MN,SN(t)} where:

N

N

20 = {(ns9)] n€ER, ¢ = 7 vaN, vl € rR"};
j=1 i) J
N

N

PV(n,9) = (n, § oNxN);
j=1 g3

N p ; N

M = IN’ the identity on 2 ;
N

N A
S (t) = e , where AN is the operator
aAV(n,0) = (a.n + a N ? o B PR L TV

’ 0 l N'j__:l r j"'l j Xj .

The operator AN may be loosely described as "the approximation

Nll
of the infinitesimal generator & for {S(t)} on the subspace 2

by using forward differences to approximate ¢ (see [3], [4]). The

- . g ——— &
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proof that AVE is an approximating sequence may be found in [4].
The approximating sequence for what we have termed piecewise

linear approximations is given by the quadruples

pwr = (BN, 8N 8% 8%(¢)} where:
AN n N N N, N N
2 ={(n,®)] n € R, ¢ = [ v.x. +w.,¥,, v.,wN er’');
jug 373 g 7 gl
AN N NN . aN,N
P (n,$) = (n, I d.x: + $.Y.);
AN 3w N. N
M (n, I v.Xx. + w.¥.) = (n,g), where
juq 4 9 -
N
g N, N N N, N N N NN, .
g=1{Gn+vilxy+{gn+wly+ jEzvjxj + ij. ;
A gNt

Here ﬁN is the operator defined (again this involves a forward

difference approximation for ¢) by RN(U,¢) = (£,¥) where

€= Agn + A (o - Zo 81 and y(t) = jgla?x? + e?w? is determined by
2 N (ned) + s gl - N,
B = N (agn + a oy - 35 ) - 80
a? =3 (¢?_1 - ¢?), B? =3 ($?_1 - $§), j = 2,...,N.

The proof that PWL is an approximating sequence is given in [7].
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We present next a summary of two examples that are typical
of the behavior we have observed in using the above schemes in
numerical computations. For results of tests with numerous other

examples (both linear and nonlinear) one should consult [2], [4],

(51, (71, [8].

Example 1: We consider the problem of minimizing

2
g =2 x@2%+ 1| wwitae
3 2 0
over u € % = L,(0,2) subject to
x(t) = x(t=1) + u(t), 8<% < 2,
x(6) =¢(0), =1 £ H 2 0,
where
260 -1 <06 < = % p
$(0) = 1
-20 + 1 . £ 9 %09 A

One can use necessary conditions for delay system control problems
to find an analytical solution to this problem (for details, see

[7)). The optimal control is given by

—— o ————
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u*(t) =

where 6 = 1.05102, and the corresponding value of the payoff is
J(u*) % 2,55531. In Figure 1, we plot typical approximate controls
(for N = 16) for the AVE and PWL schemes described above, along

with a plot of u*.

Example 2: The problem is to minimize

2
J(u) = = x2)° » & (x(t)% + u(t)$rat
2 2 0
over u € % = L2(0,2) subject to the nonlinear system
x(t) = x(t)sin x(t) + x(t-1) + u(t), D< £ < 2
x(6) = 10, =1 <8 < 0.

While we are not able to solve this problem analytically, we can
use directly the necessary conditions for delay systems to get a
numerical approximation for u* (see [2]). This can, in turn, be
used to check the convergence of schemes such as those under
discussion here. Figure 2 contains plots of GB (using the

AVE scheme) and the independently obtained numerical approximation

*
for u.

5. Final remarks.

We conclude with brief comments on recent efforts directly

related to those reported here. First, complete and detailed
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discussions (along with error estimates, numerical results for a
number of other examples, and remarks on the role of the operators
MN) for the averaging (AVE) and piecewise linear (PWL) schemes
detailed above may be found in [4], [7], and [8]. Other recent
contributions involving the use of a semigroup framework for approxi-
mation methods include the work of Reber in [11] and Banks and
Kappel in [6]. Reber, employing factor space methods (see Chapter 5
of [10]) has carried out theoretical and numerical investigations
for schemes that entail simultaneous discretizations (in both the
time and state variables). This underlying idea, which leads
directly to finite dimensional difference equation control problems
(as opposed to the ordinary differential equation approximating
problems such as those discussed above), was used in [11] to develop
a theoretical framework for problems with general nonautonomous lirear
FDE control systems. In [6] the authors show that the framework
developed in [2], [3], and [4] is an appropriate setting for the
use of splines in approximating linear and nonlinear FDE.

Several other investigators have used semigroups to treat
nonlinear FDE in the spirit of the framework given in [3]. Reddien
and Webb [12] and Sasai and Ishigaki [13], assuming a global

Lipschitz condition on the nonlinearities of the system, use ideas

from nonlinear semigroup theory (as developed in recent years in the
investigation of nonlinear evolution equations in Hilbert spaces)

to obtain convergence results for approximation schemes of the
averaging type discussed above. Kappel and Schappacher [9] develop
a "local" nonlinear semigroup theory which requires only a local

Lipschitz condition on their autonomous nonlinear FDE and obtain
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approximation techniques which are also of the averaging type. To
date, only Sasai has considered any of these nonlinear semigroup
results in the context of optimal control problems and the

theoretical results given in [14] appear to be applicable in

practice only to a much more restricted class of control problems
(problems with admissible sets of smooth controls that are essentially

conditionally compact) than those discussed above or in [2].
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